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1 Introduction and problem importance

Underwater image enhancement is the task of improving the visual quality of images which were
captured underwater. Faithfully capturing the underwater environment is notoriously difficult. For
example, a remote operated deep-sea robot may explore the seafloor, combating a strong current
which blows the robot around and stirs up sand or mud, while only diffuse light is able to reach the
camera lens. Image enhancements may take the form of color correction, defogging, compensating
for low light conditions and backscattering, or many other changes which allow the image to more
accurately capture the appearance and details of the underwater environment[6]. For examples of
various kinds of underwater image corrections, see figure at the end of this proposal from [6].

There are many reasons that we may wish to see underwater, from archaeology and marine biology
research to piloting military submarines. A large proportion of the ocean is as yet unexplored,
and documenting these areas along with the effects of mankind and climate change on the deep
sea is crucial before any such information may be permanently lost. Further, from a computer
science research perspective, underwater image enhancement is a challenging but interesting problem
because it allows for the application of image style translation techniques from elsewhere in computer
vision, as well as techniques from other areas of artificial intelligence more broadly such as natural
language processing. These connections will be further explored in the following section.

2 Related work

A large body of work is centered on improving underwater image quality, which may be divided
into two groups[1]. First, many approaches attempt to model and counteract the physical processes
by which images become distorted. There are a variety of physical processes which degrade image
quality, including the current blowing the camera around and the ways in which light is distorted in
water. This first research direction contains many of the earlier contributions to underwater image
enhancement, but it continues to generate interest and progress in recent times as well. For instance,
to correct image coloring, Li and Cavallaro[7] estimate the non-uniform background illumination of
an image’s scene in order to compensate color wastage caused by the scene-to-camera ratio. To
de-haze images, Chiang et al.[4] designed a framework that involves simulating the addition of an
artificial light source shining on the contents of an image.

While these approaches achieve noticeably improved image quality in many situations, modeling
underwater distortion faces several roadblocks. Accurately modeling distortion is challenging even
for above-ground images, so it is no surprise that doing so for underwater images in varying current
strengths that cause the camera to move, lighting conditions and proximity to the water floor (where
sand and mud may be blowing around) can prove unreliable in many circumstances. According to
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[1], the best quality models of underwater distortion processes are mathematically complicated
and difficult to employ in image enhancement systems, while still failing to reliably model what is
occurring in real life.

The second major group of approaches relies on machine learning to model the underwater dis-
tortion processes automatically. As in many areas of computer science, the presence of machine
learning has steadily increased over time in underwater image enhancement. [1] provides a sum-
mary of dozens of ML underwater image enhancement architectures, which commonly consist of
an encoder-decoder, multi-branch or generative adversarial network (GAN) structure. As one of
the more approachable architectures, Sun et al.[11] enhance underwater images using an encoder-
decoder pixel-to-pixel network, where the encoder and decoder contain three convolutional and three
deconvolutional layers respectively. Interestingly, many ML approaches heavily borrow wisdom and
domain knowledge from the first group of more physics-based works. UIR-Net from Cao et al.[3]
estimate the transmission map and background lighting in an image via two independent networks,
then use this information to restore the image and improve its visual quality.

Another interesting direction within ML approaches, which is highly related to the present
project’s aim, is dedicated to relaxing the restrictions on the type of required training data. Typ-
ically, ML training data consists of input examples with features X and labels Y . In the image
enhancement domain, this would imply using un-enhanced images as the input features X and
training a model to convert these inputs as closely as possible to their corresponding cleaned images
Y . However, it is exceedingly difficult to create large datasets of paired unclean-clean underwater
images. Humans are typically required to manually edit and restore the images, which requires time
and expert knowledge that prevent the dataset generation from being handed off to crowd-sourcing
platforms. This issue inspired Li et al.[8] to create UWGAN, which does not require unclean-clean
image pairs. Instead, UWGAN uses a cycle structure comprised of a forward and a backward net-
work, which learn the mapping functions between source (water) and target (air) domains. Then, the
water-to-air function may be applied to an underwater image in order to minimize the underwater
distortions. Another approach which does not require image pairs, MCycleGAN from Lu et al.[9]
also aims to transfer image style from an underwater to a recovered style. The estimated depth
map of a turbid underwater image serves as input to a generator, which then outputs a cleaned
image. Then, after some processing, a discriminator attempts to differentiate between generated
and manually-cleaned images.

Style transfer and unpaired training data are not unique to underwater image enhancement.
Other work has applied style transfer to general image datasets[2], and uses of unpaired training
data have even been explored in the area of machine translation for natural languages. For instance,
[5] trains a machine translation network using two large, monolingual datasets (one for source and
one for target language), along with a small parallel dataset of sentences presented in each language.

3 Project plan

Initially, efforts will focus on re-implementing prior state-of-the-art approaches, particularly those
relating to style transfer1 such as MCycleGAN[9]. Time allowing, it seems promising to also explore
approaches from other areas such as machine translation. Borrowing from [5], a potential underwater
image enhancement architecture may consist of an encoder and decoder, which are trained using a
large dataset of unclean underwater images, a large dataset of clean images and a smaller dataset

1Unfortunately, the publisher for UWGAN[8] has not made the PDF available to the public, so it is necessary to
rely on surveys and other works which reference it. For this reason, although the model is highly relevant, it may be
challenging to gather enough information to re-implement it.
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of images which have both clean and unclean versions.

4 Why there is need for a new approach

As previously stated, it is difficult to find large amounts of paired clean-unclean images in the domain
of underwater image enhancement. As such, further exploration of unpaired approaches will enable
training with more data and designing larger models which may capture the underwater distortion
process more accurately. The two approaches from [8, 9] for unpaired data are quite recent and
there has been little borrowing from other domains with more mature bodies of work on unpaired
training. For this reason, the model described in the previous section merits exploration.

In addition, many models still rely on human domain knowledge to design architectures which
specifically target and model particular distortion processes such as hazing and backscattering[1].
This may be partially necessary in underwater image enhancement due to the continued difficulties in
training large models as a result of the small dataset sizes. So, training a larger model may lessen the
need for human domain knowledge and allow a more general encoder-decoder architecture to model
the distortion processes automatically. Aside from being more convenient for those lacking expert
domain knowledge, it also allows one model to be trained to improve a wide range of distortions
globally on an image instead of training one model to target hazing, another to perform color
correction, etc. According to [1], this more general model is a worthy goal for future work.

5 Evaluation and timeline

For ease of comparison, evaluation will rely on the same metrics and datasets as some key papers
evaluating UWGAN and MCycleGAN[9] used. [1] surveyed both of these models, along with many
others, on the metrics of underwater color image quality evaluation (UCIQE)[12], which focuses on
chroma, contrast and saturation, and underwater image quality measure (UIQM)[10] which measures
image colorfulness, sharpness and contrast. Of course, qualitative evaluation of output images will
also be performed.

The ideal timeline would look as follows:

• Replication (March): Training and testing pre-existing underwater image enhancement models

• Innovation (first two weeks of April): Implementing the proposed model

• Evaluation (last two weeks of April): Detailed experiments

• Summarization (May): Reviewing experimental results, preparing the website and presentation
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Figure 1: Categories of underwater image enhancement, from [6].
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